
The International Journal of Interdisciplinary Organizational Studies 
ISSN: 2324-7649 (Print), ISSN: 2324-7657 (Online) 
Volume 19, Issue 1, January-June, 2024 
 

 
 
 

921 

CLUSTERING BASED VM MIGRATION AND BIDIRECTIONAL RECURRENT 
NEURAL NETWORK (BIRNN) FOR EDGE-CLOUD COMPUTING ENVIRONMENTS 

 
1*S. Supriya, 2Dr. K. Dhanalakshmi   

1*Research Scholar, Department of Computer Science, Kongunadu Arts and Science College 
Coimbatore – 641029, Email: supriyasundaram@gmail.com 

2Head of the Department, Department of Information Technology, Kongunadu Arts and  
Science College, Coimbatore – 641029, Email: kdhanalakshmimca@gmail.com 

 

ABSTRACT: Utilization of Internet of Things (IoT) gadgets and the information generated by 
these gadgets has grown significantly. It utilizes cloud and mobile-edge resources with ease. 
Because of the limited resource capacities, IoT flexibility aspects, resource diversity, network 
ranking, and problematic nature, it is difficult to schedule application jobs effectively in these kinds 
of contexts. The issue cannot be effectively solved by current heuristics and RL (Reinforcement 
Learning)-methods since they are not generalizable or quickly adaptable. This research introduces 
an innovative way to effectively utilize multi-layer resources in stochastic situations through 
dynamic task scheduling in the Edge-Cloud systems. Firstly, Fuzzy Election Based Optimization 
Algorithm (FEBOA) has been introduced for minimizing the metrics such as ART (Average 
Response Time), Average Energy Consumption (AEC), SLAV (Service Level Agreements 
Violations), and Average Migration Time (AMT). Secondly, Adaptive Threshold Fuzzy C-Means 
(ATFCM) clustering has been introduced for VM load detection. Features of host from RMS 
(Resource Monitoring Service) are utilized through Bidirectional Recurrent Neural Network 
(BiRNN) method to detect the next scheduling decisions. For forward and reverse input TS (Task 
Scheduling), BiRNN takes advantage of data to regulate connections. Each RNN cell's input (task) 
and output (host allocated to task) dependencies were defined for the BiRNN classifier in the 
forward as well as the reverse direction. Lastly, a scheduler using Asynchronous-Advantage-Actor-
Critic (A3C) is shown, which is capable of taking into account all relevant task and host parameters 
in order to make task scheduling that would improve efficiency. Power usage, timing of responses, 
SLA, and operational charges are used to quantify the outcomes. 
INDEX TERMS: (EC) Edge Computing, (CC) Cloud Computing, (TS) Task Scheduling, 
Bidirectional Recurrent Neural Network (BiRNN) and Fuzzy Election Based Optimization 
Algorithm (FEBOA).  

1. INTRODUCTION 

Over 50 billion, IoT gadgets would be linked to the internet in the upcoming years as an outcome 
of the recent explosive growth of the IT (Information Technology) industry [Rababah et al., 2020; 
Shekhar and Gokhale 2017]. Furthermore, the emergence of intricate and computationally 
demanding IoT applications which frequently create and process massive amounts of data, as it is 
facilitated by the accessibility of reliable, fast internet as well as communication tools. Because 
CC provides immediate access to a vast amount of computational resources for DA (Data 
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Analytics) and service processing, it has been recognized as a feasible and viable technology to 
enable such growth [Elgendy et al., 2018].  
However, the massive volume of information created by IoT gadgets needs to be sent and analyzed 
in the moment, while CC resources are centralized and located away from IoT gadgets. For this 
reason, the CC model is unsuitable for apps requiring high (QoS) Quality of Service, immediate 
interactivity, and decreased latency because of delays in the network [Sahni etv al., 2017]. 
Complex computations can be delegated to more capable gadgets to relieve from these restrictions 
and satisfy the communication/processing latency requirements. 
For this novel class of IoT uses, Edge-Cloud is a suitable computing model that offers a few delay 
reactions [Yousefpour et al., 2019], [Tuli et al., 2019], [Wang et al., 2019]. Here, in addition to the 
distant cloud, the network's edge has insufficient processing power to respond quickly to critical 
applications. It is vital to use Edge resources as efficiently as possible in order to support more 
apps and optimize their QoS at the same time. A scheduler that effectively handles applications 
and underlying resources must be used to accomplish this. The process of assigning resources 
(computations) to the specific user making a request for services is known as scheduling. To 
optimize resource utilization, scheduling a specific job at the edge or cloud might be a tough 
operation in the Edge Cloud. The scheduling challenge is further complicated by the problematic 
behavior of the Edge-Cloud background, that affects several aspects of the work, including the 
duration, arrival rate, and demand for resources.  
In order to effectively employ the multi-layer resources in unpredictable situations and saving 
money and energy, also enhancing the QoS of apps, dynamic task scheduling was established. The 
main difficulties include balancing loads, accessibility, dependability, and adaptive resource 
allocation. Therefore, in the edge cloud background, SOTA (State-Of-The-Art) scheduling 
algorithm approaches are required at all times. An approach to scheduling that depends on 
RL offers hope for dynamic system optimization [Fox et al., 2019]. Diverse value-RL algorithms 
are analyzed in current studies and offered for optimizing various elements of RMS in distributed 
computing backgrounds [Xu et al., 2017], [Li et al., 2018]. However, prior study indicates that 
these value-RL algorithms perform poorly in Edge-Cloud deployments because they are unsuitable 
for highly chaotic situations [Mnih et al., 2016]. There aren't many works that can take advantage 
of policy gradient techniques [Mao et al., 2016], optimize for just one QoS parameter, and neglect 
asynchronous updating in order to remain more adaptable in extremely unpredictable conditions. 
Furthermore, no previous study has taken advantage of dynamic trends in task load, net, and node 
behaviors for improving the decisions of scheduling. Moreover, the diverse resources (e.g., varying 
computation resource capabilities) comprise the edgecloud backgrounds. 
Additionally, the centralized scheduling policy is employed in this study remains inappropriate for 
decentralized or multilevel backgrounds. Rather than allocating additional properties, VMs in the 
overloaded to under loaded edge devices. To ensure effective computing and run in the edge 
servers, there may be less migration as possible among neighboring edge servers [Tao et al., 2019]. 
Because the majority of edge devices are mobile, there will be a boom in demand for shared 
resources in the edge servers, creating a dynamic edge computing backgrounds. By minimizing 



CLUSTERING BASED VM MIGRATION AND BIDIRECTIONAL RECURRENT NEURAL NETWORK (BIRNN) FOR EDGE-CLOUD COMPUTING 
ENVIRONMENTS 

923 

resource contention, it is possible to utilize these shared resources without any conflicts. The 
scheduling issue in CC falls into the category of NP (Nondeterministic Polynomial) challenging 
issues, because of its enormous solution space, which makes finding the best solution as well 
as time-consuming. Identifying an undesirable answer immediately is the ideal case in a cloud 
background. It has been demonstrated that metaheuristic-based approaches can solve these kinds 
of issues almost perfectly in an appropriate period of time. The advantages of this algorithms were 
simplicity of idea, easy application, independence from particular issues, lack of requirement for 
the reasoning procedure, and effectiveness in solving challenging issues [Gonzalez et al., 2022]. 
In order to handle optimization issues and produce better quasi-optimal solutions, metaheuristic 
algorithms execute well when the 2 signs of exploration and exploitation are combined with the 
concepts of global and local search [Mejahed and Elshrkawey 2022]. The purpose of this research 
is to build the Election-Based Optimization Algorithm (EBOA), a new metaheuristic procedure 
that depends on popular movement and voting process model [Trojovský and Dehghani 2022]. 
The Edge-Cloud system framework, including all the necessary elements to provide resources 
with diversity and offloading TS. The improvement of VM migration has led to the ATFCM 
(Adaptive Threshold Fuzzy C-Means clustering). The presentation of the FEBOA aims to take the 
intricate dynamics of resource heterogeneity and workloads. Scheduling technique depends on 
Bidirectional Recurrent Neural Networks (BiRNNs) for taking use of time-based patterns in a 
hybrid Edge-Cloud configuration. The suggested model can swiftly adjust its allocation policy in 
response to host behavior, dynamic workloads, and QoS demands because of to the Policy 
Gradient. Furthermore, by utilizing the adaptive loss function, the suggested scheduling paradigm 
could be adjusted to maximize the required QoS metrics in accordance with the presentation 
requirements.  

 

2. LITERATURE REVIEW 

A unique DNCPSO (Directional and Non-local-Convergent PSO) was suggested by [Xie et al., 
2020]. It uses non-linear inertia weight via selection and mutation processes with directional search 
procedure. This can significantly lessen the duration and expenses while obtaining an impacting 
outcome. The outcomes of simulation tests conducted on a variety of practical and randomized 
workflow conditions indicate that the DNCPSO is significantly efficient and effective to 
outperform existing standard and modernized algorithms. 
A two-level scheduling optimization technique for an edge cloud background has been suggested 
by [Li et al., 2020]. The majority of tasks could be allocated to edge data centers under the AFS 
(Artificial Fish Swarm) TS approach, which is used for first-level scheduling. The TS to a 
centralized cloud data center if the edge data center is unable to finish due to insufficient resources. 
The task is then separated into tasks of similar size. Next, second-level scheduling is suggested, 
considering the node load balance. It suggests edge cloud task scheduling to shorten completion 
times, and also presents centralized cloud TS to lower overall costs. The experimental findings 
demonstrate that the suggested strategy outperforms the others by reducing the overall expenses 
and latencies as well as timing of completion. 
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A Deep Q-learning TS (DQTS) that integrates the benefits of the DNN (Deep Neural Network) 
and the Q-learning procedure was suggested by Tong et al. [Tong et al., 2020]. The purpose of this 
novel technique for resolving the risk of handling DAG (Directed Acyclic Graph) workloads in 
CC settings. This approach applies the commonly employed Deep Q-learning (DQL) technique to 
TS, where DQL serves as a major inspiration for fundamental model learning. Tests that compare 
the duration and load balanced variance in TS are carried out according to WorkflowSim 
advancements. Verification of the effectiveness of optimization and learning capabilities in DQTS 
is done through both simulation and real-world tests. DQTS offers benefits by the scalability, 
limitation, and learning capabilities.  
Tuli et al. [Tuli et al., 2020] suggested Residual RNN (Recurrent Neural Network) (R2N2) for 
updating paradigm parameters quickly and A3C learning to swiftly adapt to dynamic 
circumstances with a smaller amount of information. Consequently, a real-time scheduler 
depends on A3C is presented for unpredictable Edge-Cloud systems that enable decentralized 
learning to occur simultaneously among several agents. In order to produce effective scheduling 
decisions, a multitude of cloudlets or tasks, factors and time-based designs are captured by the 
R2N2 framework. The recommended paradigm is adaptable and can alter many hyper-parameters 
suitable for the demands of the particular app.  
A modified HHO (Harris Hawks optimization) technique was presented by [Zivkovic et al., 2021] 
to address the cloud-edge workflow scheduling problem. The Opposition-Based Learning (OBL) 
process used in the improved HHO methodology improves the original HHO method by 
addressing the cloud-edge workflow scheduling issue. Cost and makespan are the two basic goals 
that are pursued in simulations. The suggested tests made use of actual workflow models, and they 
assessed the suggested algorithm by contrasting it with alternative strategies that have been tried 
under similar test and simulation environments in the current literature. The suggested enhanced 
HHO method surpassed other cutting-edge techniques by lowering costs and duration metrics for 
performance, according to outcomes of executed tests. 
To support DS (Dynamic Scheduling) in fog-CC, [Shruthi et al., 2022] created a Deep Q-Network 
(DQN) based on Mayfly Taylor Optimization based scheduling Algorithm (MTOA). By combining 
the ideas of the Taylor series and MA, MTOA, which improves convergence performance and it 
is used in this instance to carry out the DS procedure. Furthermore, DQN requires fewer resources 
as well as time, hence it is used for estimating power usage. Fitness criteria take into account 
computation costs, power consumption, and SLA violations. Rules are developed based on the 
specified SLA parameters, and they are matched, via angular distance, with the task or service that 
is being requested for SLA verification. Following the completion of the energy estimated, 
dynamic scheduling is carried out using the calculated MTOA.  
A Deep RL structure for process scheduling has been suggested by [Jayanetti et al., 2022]. A new 
hierarchical action space is intended to facilitate the differentiation of edge nodes from cloud 
nodes. Proximal policy optimization methodology is added to the hybrid A3C-scheduling 
architecture to improve its ability to handle complicated workflow scheduling issues in edge-cloud 
scenarios. Utilizing the use of power, time required for execution, meets the deadline %, and % of 
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tasks finished as performance measures, the suggested framework's effectiveness was tested 
against different standard methods. Therefore, the outcomes show how effective the suggested 
method is in finding the best balance among the opposing objectives of reducing 
the implementation time and power consumption. 
The migration cost resulting from scheme adjustments made throughout the modelling and 
optimization phase was taken into account by [Zhang et al., 2022]. The (NSGA-II) Non-Dominated 
Sorting Genetic Algorithm II-Seq2Seq algorithm is presented in order to develop a low-cost 
scheduling strategy. It uses the historical scheduling strategy to create an alternative scheduling 
strategy. WorkflowSim has been customized for the purpose of conducting tests. Through 
experimentation, it is discovered that the approach presented in this study may generate an 
adaptively FT (Fine-Tuning) scheduling system while also adapting to changes in task load. The 
population optimization process of NSGA is expedited in numerous successive scheduling tests, 
which drastically reduce the extent of time required to get the scheduling strategy. 
A three-step scheduling methodology was presented by [Li et al., 2022] to integrate the container 
distribution in a cloud-edge background with the scheduling of container-based workflows. To 
allow for virtual CPU (vCPU) sharing between many containers, the initial step involves allocating 
vCPU to each container. Next, in an edge or cloud context, the containers are scheduled onto VMs 
via a two-step resource deployment process. Various goals are taken into account, such as reducing 
duration, load imbalance, and power usage, from the viewpoint of containerized workflows and 
cloud-edge resources. 3 evolution strategies: The Co-Evolution Strategy (CES), the Basic Non-
Co-Evolution Strategy (B-NECS), and the Hybrid Non-Co-Evolution Strategy (H-NECS) are 
created and integrated with two multi-objective method framework to produce a group of non-
dominated solutions. The suggested framework executes better than the existing 2-stage 
scheduling framework, and H-NECS beats other strategies, according to simulation data. 
A hybrid approach was presented by [Xue et al., 2022] to address the resource scheduling problem 
with subtask dependency and parallelism. This research fully utilizes the capabilities of GA 
(Genetic Algorithm) and DQN to increase the algorithm's convergence speed. DQN generates the 
initial GA population. In order to assess the suggested algorithm's efficacy, this study chooses three 
actual scientific workflows for experimentation. According to the test outcomes, the hybrid method 
can improve the optimization effect immediately and converge soon. 

 

3. SYSTEM MODEL AND PROBLEM FORMULATION 

It is presumed that both edge and cloud nodes make up the fundamental infrastructure for this 
study. Figure 1 displays an outline of the structure model. Dispersed diverse properties in the 
network structure, spanning from the network edge to the multi-hop remote cloud, comprise 
the edge-cloud background. For various app cloudlets, the computing properties serves as 
hosts. Although the edge devices have limited computational capacity and are resource-
constrained, they offer significantly faster reaction times because they are closer to the users. 
The RMS that includes scheduling, VM migration, and resource monitoring services is in 
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charge of the structure. The RMS makes a choice based on the projected completion 
timeframes or deadlines for CPU, RAM, bandwidth, and disk demands.  

 
FIGURE 1. SYSTEM MODEL 

Workload Model: Every cloudlet has an active cloudlet, and task generation is stochastic. 
Partition the time of processing into scheduling intervals of the same length, as has been done in 
previous research [Mnih et al., 2016]. As seen in Figure 2, the scheduling intervals are numbered 
according to the sequence in which they occur.  

 

Dynamic workloads 

Users and IoT devices  

Resource management system 

 

Asynchronous-Advantage-
Actor-Critic (A3C)  

Scheduling by BiRNN and VM 
Migration service by ATFCM 

Constraint Satisfaction Module 

Resource monitoring service by 
Fuzzy Election Based 

Optimization Algorithm 
(FEBOA) 

Workloads and SLA 
requirements 

Infrastructure  

 Fog nodes  Cloud nodes  

Results  

Scheduling 
decisions  

Hosts and Task 
characteristics  



CLUSTERING BASED VM MIGRATION AND BIDIRECTIONAL RECURRENT NEURAL NETWORK (BIRNN) FOR EDGE-CLOUD COMPUTING 
ENVIRONMENTS 

927 

 
FIGURE 2. DYNAMIC TASK WORKLOAD MODEL 

𝑆𝐼௜, the ith scheduling interval, is displayed. It initiates at time 𝑡௜  and continues up to 𝑡௜ାଵ, the 
jump to the succeeding interval. The activities that were being performed on the hosts and 
designated as 𝑎௜ , are the active tasks in every 𝑆𝐼௜. Additionally, at the initiation of 𝑆𝐼௜, the 
collection of tasks that are finished is indicated by 𝑙௜, and the new tasks that the WGM sends are 
indicated by 𝑛௜. New tasks, 𝑛௜, have been added to the structure, while the tasks 𝑙௜ are removed 
from it. As an outcome, the active tasks at the beginning of the interval 𝑆𝐼௜  are 𝑎௜is𝑎௜ିଵ ∪ 𝑛௜\𝑙௜. 

 

Problem Formulation: 𝐿𝑜𝑠𝑠௜ can be represented by the loss of the 𝑆𝐼௜ interval. In an 
enumeration of (H) hosts, 𝐻௜ is labelled as the ith host. The set of H in an edge-cloud environment 
is referred to as Hosts, and they are enumerated as [𝐻଴, 𝐻ଵ, … , 𝐻௡]. Assign a hostname {T} to a 
task T as well. The system's initial state at the initiation of 𝑆𝐼௜, known as Statei, is made up of new 
tasks (𝑛௜), any active tasks from the previous interval that remains in evolution (𝑎௜ିଵ\𝑙௜), and the 
parameter values for the hosts.  

 

Each task, 𝑎௜(=  𝑎௜ିଵ ∪ 𝑛௜\𝑙௜),  requires the scheduler to choose which host to allocate or 
migrate ; for 𝑆𝐼௜this decision is known as 𝐴𝑐𝑡𝑖𝑜𝑛௜. The migratable tasks are represented by 𝑚௜  ⊆

 𝑎௜ିଵ  ∪ 𝑙௜. 𝐴𝑐𝑡𝑖𝑜𝑛௜  that includes a decision of migration for tasks in 𝑚௜ and tasks in 𝑛௜  is the 
allocation decision, thus, 𝐴𝑐𝑡𝑖𝑜𝑛௜  = {ℎ ∈ Hosts for task 𝑇|𝑇 ∈ 𝑚௜ ∪ 𝑛௜}. Scheduler therefore 
indicates that Model is a function: 𝑆𝑡𝑎𝑡𝑒௜  → 𝐴𝑐𝑡𝑖𝑜𝑛௜. The framework's assignment of tasks to 
hosts, or, 𝐴𝑐𝑡𝑖𝑜𝑛௜ determines the 𝐿𝑜𝑠𝑠௜ of an interval, here, n is the amount of hosts in the Edge-
Cloud Data Enter. Therefore, the issue can be stated as indicated by Equation (1) for a suitable 
framework.  
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minimize
ெ௢ௗ௘௟

෍ 𝐿𝑜𝑠𝑠௜

௜

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∀𝑖, 𝐴𝑐𝑡𝑖𝑜𝑛௜ = 𝑀𝑜𝑑𝑒𝑙(𝑆𝑡𝑎𝑡𝑒௜) ∀𝑖 ∀𝑇 

∈ 𝑚௜ ራ 𝑛௜ ,  

{𝑇} ← 𝐴𝑐𝑡𝑖𝑜𝑛௜(𝑇) 

(1) 

Describing the process for model updating following each scheduled intervals after the input-
output requirements and the loss function is established. 

4. REINFORCEMENT LEARNING MODEL 

RL paradigm that works well with Policy Gradient Learning (PGL) and the issue description. 

Input Specification: The Statei, which comprises of the host's characteristics such as 
RAM, disk space, CPU, and the bandwidth, is the input used by the scheduling model [Akbari et 
al., 2017]. In addition, it contains information about the host's power features, reaction time, rate 
for each unit time, and MIPS (Million Instructions Per Second). A tiny cluster of hosts with 
numerous tasks assigned to them could guarantee low consumption of power. In a FV (Feature 

Vector) known as 𝐹𝑉௜
ு௢௦௧௦, each of these parameters have been assigned for each host. There are 

2 discrete sets of tasks in 𝑛௜ and 𝑎௜ିଵ\𝑙௜ . 

 

Output Specification: Depending on the input Statei, the framework must assign a host to 
all task in 𝑎௜ at the initiation of the interval 𝑆𝐼௜. The result, also known as 𝐴𝑐𝑡𝑖𝑜𝑛௜, is a migration 
choice for any active tasks from the preceding interval that remain ∈  𝑎௜ିଵ\𝑙௜ and a H allocation 
for all 𝑡𝑎𝑠𝑘 ∈ 𝑛௜ new task. Every task that is moved must be able to be moved to the new host in 
order for the task to be considered feasible within the given limitations. Furthermore, if a host (h) 
is allocated to T, it must not turn into overloaded afterwards; in other words, h is appropriate for 
T. Consequently, 𝐴𝑐𝑡𝑖𝑜𝑛௜via Equation (2) so that, for the interval 𝑆𝐼௜, ∀𝑇 ∈ 𝑛௜  ∪ 𝑚௜ , {𝑇} ←

𝐴𝑐𝑡𝑖𝑜𝑛௜(𝑇), 

 

𝐴𝑐𝑡𝑖𝑜𝑛௜ = ൜
ℎ ∈ 𝐻𝑜𝑠𝑡𝑠∀𝑡 ∈ 𝑛௜

ℎ௡௘௪ ∈ 𝐻𝑜𝑠𝑡𝑠∀𝑡 ∈ 𝑚௜ 𝑖𝑓 𝑡 𝑖𝑠 𝑡𝑜 𝑏𝑒 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑
 

(2)  

If, 𝑡 ∀ 𝑡 ∈ 𝑛௜  ∪  𝑚௜ then 𝐴𝑐𝑡𝑖𝑜𝑛௜ is appropriate. The output of NN can be a vector representing 
each host's preferred allocation for each task. This indicates that the framework gives a ranked 
list of hosts as an alternative of designating one host for each task. 

 

5. PROPOSED METHODOLOGY 

To minimize metrics such as Average SLAV, ART, AMT, and AEC, the FEBOA was presented. 
Based on the load handled, data center hosts using ATFCM clustering are categorized into 4 
categories: extremely low load, low load, medium load, and maximum load hosts. A model 
known as the BiRNN is presented for predicting the upcoming decisions for scheduling. 
BiRNN is utilized for updating model parameters quickly, and A3C learning is employed to 
promptly adjust to active circumstances having fewer information. 
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Average Energy Consumption (AEC): The infrastructure's energy consumption 
normalized by the environment's maximum power is known as AEC, and it applies to any interval. 
Enlarge the power utilized through a host, ℎ ∈ 𝐻𝑜𝑠𝑡𝑠  through a factor 𝛼௛ ∈ [0,1], varies based 
on the operator's necessities and the cloud and edge nodes deployment strategy. In this way, the 
power is normalized: 

 

𝐴𝐸𝐶௜
ு௢௦௧௦ =

∑ 𝛼௛௛∈ு௢௦௧௦ ∫ 𝑃௛(𝑡)𝑑𝑡
௧೟శభ

௧ୀ௧భ

∑ 𝛼௛௛∈ு௢௦௧௦ 𝑃௛
୫ୟ୶(𝑡௜ାଵ − 𝑡௜)

 
(3) 

The maximum power of h is represented by 𝑃௛
୫ୟ୶, and 𝑃௛(𝑡) is the host (h) of power function by 

time. 

 

Average Response Time (ART): When calculating the ART for SIi interval, one must take 
into account the ART to the current interval and normalize it by the ART for each of the leaving 
tasks (li+1). The general description of ART is as follows:  

 

𝐴𝑅𝑇௜ =
∑ 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 (𝑡)௧∈௟೔శభ

|𝑙௜ାଵ| max
௜

max
୲∈୪౟

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 (𝑡)
 

(4) 

Average Migration Time (AMT): AMT for each of the active tasks (ai) within an interval 
SIi is determined by taking the AMT to the present intervals and normalizing it. The definition of 
AMT is as follows: 

 

𝐴𝑀𝑇௜ =
∑ 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒(𝑡)௧∈௔೔

|𝑎௜| max
௜

max
୲∈୪౟

𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒 (𝑡)
 

(5) 

Average SLA Violations (SLAV): The average amount of SLAV for leaving the task (li+1) 
throughout an interval SIi is known as average SLAV. Task T of SLA(t) is the outcome of 2 
measures: (i) the number of times an active host violates the SLA and (ii) the amount of PD 
(Performance Degradation) brought by migrations. Consequently, 

 

𝑆𝐿𝐴𝑉௜ =
∑ 𝑆𝐿𝐴(𝑡)௧∈௟೔శభ

|𝑙௜ାଵ|
 

(6) 

This approach adjusts its parameters according to restrictions along with reducing Lossi. 

 

5.1. Fuzzy Election Based Optimization Algorithm (FEBOA)  

The procedure in which members of a resource monitoring group select a task from among requests 
is known as an election. Each and every person in that society, including those who did not vote 
for him, is impacted by the VM's election as leader. The ability to select and vote for the superior 
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candidate increases with VM awareness. FEBOA is a planned population-based metaheuristic 
algorithm. Every task assigned to the population in the FEBOA is a suggested fix for the resource 
monitoring. Equation (7) is used to describe the FEBOA population as a matrix known as the 
population matrix. 

 

𝑋 =

⎣
⎢
⎢
⎢
⎡
𝑋ଵ

⋮
𝑋௜

⋮
𝑋ே⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑥ଵ.ଵ

⋮
𝑥௜.ଵ

⋮
𝑥ே.ଵ

…
⋱…
⋰
⋯

𝑥ଵ,௝

⋮
𝑥௜,௝

⋮
𝑥ே,௝

⋯
⋰
⋯
⋱
⋯

𝑥ଵ,௠

⋮
𝑥௜,௠

⋮
𝑥ே,௠⎦

⎥
⎥
⎥
⎤

ே×௠

 

(7) 

Here, N symbolizes the dimension of the EBOA population, m denotes the total amount of decision 
variables:  AEC, ART, AMT, and Average SLAV, and the FEBOA population matrix for resource 
monitoring is referred as X . The ith FEBOA member is denoted by X୧. The ith FEBOA member’s 

j୲୦ scheduled task is represented as x୧,୨. Equation (8) determines the beginning position of VM in 

the search space at random. 

 

𝑥௜,௝ = 𝑙𝑏௝ + 𝑟. ൫𝑢𝑏௝ − 𝑙𝑏௝൯, 𝑖 =  1,2, . . . , 𝑁, 𝑗 =  1,2, . . . , 𝑚 (8) 

Here, 𝑟 ∈ [0,1] is a random number in the interval and the lower and upper bounds can be denoted 

by 𝑙𝑏௝ and 𝑢𝑏௝, the j୲୦decision variables (AEC, ART, AMT, and SLAV) of the 𝑙𝑏௝ and 𝑢𝑏௝. Equation 

(9) [Trojovský and Dehghani 2022] specifies these assessed values for the resource monitoring's 
objective function through a vector. 

 

𝑂𝐹 =

⎣
⎢
⎢
⎢
⎡
𝑂𝐹ଵ

⋮
𝑂𝐹ூ

⋮
𝑂𝐹ே⎦

⎥
⎥
⎥
⎤

ே×ଵ

=

⎣
⎢
⎢
⎢
⎡
𝑂𝐹(𝑋ଵ)

⋮
𝑂𝐹(𝑋௜)

⋮
𝑂𝐹(𝑋ே)⎦

⎥
⎥
⎥
⎤

ே×ଵ

 

(9) 

Here, the ith FEBOA’s obtained OF (Objective Function) value can be denoted as 𝑂𝐹௜  and the 
achieved OF vector values of the FEBOA population can be symbolized as OF. The OF's values 
act as conditions for assessing the suggested solutions' quality, with the function’s best value 
designating the best member and the worst value designating the worst member. The two stages of 
exploration and exploitation that make up the FEBOA algorithm population update process are 
covered here.  

 
Phase 1: Voting process and holding elections (exploration).  
FEBOA members received votes for an individual during the election. As a result, equation (10) is 
used to simulate people's awareness within the VM. Those having greater objective function values 
during the simulation procedure. 
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𝐴௜ = ቐ

𝑂𝐹௜ − 𝑂𝐹௪௢௥௦௧

𝑂𝐹௕௘௦௧ − 𝑂𝐹௪௢௥௦௧
,   𝑂𝐹௕௘௦௧ ≠ 𝑂𝐹௪௢௥௦௧;

1,      𝑒𝑙𝑠𝑒,

ቑ 
(10) 

Here, the OF’s best and worst values are represented as 𝑂𝐹௕௘௦௧and 𝑂𝐹௪௢௥௦௧, respectively, and the 
realization of the ith EBOA member is 𝐴௜. It should be stated that, in the resource monitoring 
process, the objective function's minimum value is associated with 𝑂𝐹௕௘௦௧ and maximum value 
with 𝑂𝐹௪௢௥௦௧; whereas the issues of maximization, on the other hand, it is presumed in the FEBOA 
which the least amount of candidates (𝑁஼)  is two (i.e., 𝑁஼ ≥  2)), indicating as 2 or more 
candidates may file to run in the election. If not, that VM will vote for alternative candidates at 
random. Equation (11) provides a numerical explanation of this voting procedure. 

𝑉௜ = ൜
𝐶ଵ,
𝐶௞,

    𝐴௜ > 𝑟;
𝑒𝑙𝑠𝑒,

 
(11) 

Here, the best optimal VM for each resource monitoring can be referred as 𝐶ଵ, the vote of the 𝑖௧௛ 
candidate in the VM can be denoted as 𝑉௜, and the 𝑘 th candidate can be denoted as 𝐶௞, randomly 
chosen number 𝑘 from the {2,3, . . . , 𝑁஼} set. candidate's positions within the FEBOA are updated 
with the elected leader's influence and direction. The leader leads the procedure of updating the 
FEBOA population in a manner that all members are assigned a novel position initially. If updating 
to the recently created position increases the OF's value, then it is acceptable. In the event that not, 
the appropriate member holds their prior position. Equations (12–13) are used in the FEBOA to 
model this update process. 

 

𝑥௜,௝
௡௘௪,௉ଵ = ቊ

𝑥௜,௝ + 𝑟. ൫𝐿௝ − 𝐼. 𝑥௜,௝൯ ,   𝑂𝐹௅ < 𝑂𝐹௜;

𝑥௜,௝ + 𝑟. ൫𝑥௜,௝ −  𝐿௝൯,              𝑒𝑙𝑠𝑒,
 

(12) 

𝑋௜ =  ൜
𝑋௜

௡௘௪.௉ଵ,
𝑋௜ ,      

𝑂𝐹௜
௡௘௪,௉ଵ  < 𝑂𝐹௜;

𝑒𝑙𝑠𝑒 ,
 

(13) 

  

Here, 𝑂𝐹௜
௡௘௪,௉ଵ   is the value of the OF, L is the elected leader, and 𝑂𝐹௅ is the value of the OF. The 

integer I arbitrarily chosen from the values of 1 or 2. A novel created position for the ith FEBOA 

member is denoted as 𝑋௜
௡௘௪.௉ଵ, as it represents the jth dimension. 

 
Phase 2: Public movement to raise awareness (exploitation)  
The level of awareness among society's members greatly influences their ability to make wise 
decisions throughout the exploration procedure. Any suggested algorithm's nearby local search 
may yield a better result. A random location is taken into consideration in the locality of every 
member in the search space for replicating this local search procedure. The updated condition is 
then used to assess the resource monitoring's objective function in order to see if it is superior to 
the member's current VM. The local search is effective and the relevant member's VM position is 
updated if the novel VM location has a superior value for the OF. Eqns. 14–15 are used to model 
this update procedure intended for improving awareness among individuals in the EBOA. 
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𝑥௜,௝
௡௘௪,௉ଶ = 𝑥௜,௝ ∗ 𝑓𝑤 + (1 − 2𝑟). 𝑅. ൬1 −

𝑡

𝑇
൰ . 𝑥௜,௝ 

(14) 

𝑋௜ =  ቊ
𝑋௜

௡௘௪,௉ଶ, 𝑂𝐹௜
௡௘௪,௉ଶ < 𝑂𝐹௜

𝑋௜ , 𝑒𝑙𝑠𝑒
   

(15) 

Here, 𝑂𝐹௜
௡௘௪,௉ଶis the OF's value, R is the constant = 0.02, the iteration contour is t, and the highest 

amount of iterations be T. A recently generated VM location for the ith FEBOA member can be 

denoted as 𝑋௜
௡௘௪,௉ଶ. Its  jth dimension can be represented by 𝑋௜,௝

௡௘௪,௉ଶ. The algorithm's weight is 

generated by 𝑓𝑤 in equation (14). For every language phrase, a range of values between 0 and 1 
along with some tolerance zones are assigned. Next, a triangular fuzzy integer is created to 
represent the jth vague (fuzzy) weight.  

 

𝑤෥௝ = (𝑣௝ − 𝛿௝
௟, 𝑣௝ , 𝑣௝ + 𝛿௝

௨) (16) 

Here, the zone for the weight value of the jth criterion can be defined as 𝛿௝
௟, 𝛿௝

௨(𝑗 = 1,2, . . . , 𝑘), and 

the weight that most closely matches the language expression of criterion relevance is 
𝑣௝(𝑗 = 1,2, . . . , 𝑘) .  

 

Start EBOA.  

Input problem information: variables, objective function, and constraints. 

 Set EBOA population size (N) and iterations (T). 

 Generate the initial population matrix at random.  

Evaluate the objective function. 

 For t = 1 to T 

   Update best and worst population members.  

    Phase 1: Voting process and holding elections (exploration).  

    Calculate A using Eq. (4).  

Determine candidates based on awareness criteria.  

Simulate holding election and voting using Eq. (5). 

Count the votes and determine the election winner as leader.  

For i = 1 to N 

     Calculate X new,P1 i using Eq. (6). 
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     Update Xi using Eq. (7). 

 Phase 2: Public movement to raise awareness (exploitation).  

     Calculate X new,P2 i using Eq. (8). 

     Update Xi using Eq. (9).  

 end  

    Save best proposed solution so far.  

end  

  Output best quasi-optimal solution obtained with the EBOA.  

End EBOA. 

 

5.2. VM migration by Adaptive Threshold Fuzzy C-Means (ATFCM) clustering 

The Bandwidth, RAM, CPU, and disk of computers in data centers are all related to the 
amount of energy they use. In data centers, proper virtual machine migration across servers 
can lower energy usage and SLA violations. On the other hand, frequent virtual machine 
migrations may have a detrimental effect on the virtual machine's application performance.  

 SLA Violation Metrics: A crucial component of any VM migration procedure is SLA 
violation. There are now two approaches to characterize the SLAV. 

Total PDM (Performance Degradation Affected by VM Migration): It is indicated by equation 
(17),  

𝑃𝐷𝑀 =
1

𝑀
෍

𝐶ௗೕ

𝐶௥ೕ

ெ

௝ୀଵ

 
(17) 

In the data center, the amount of VMs can be represented through the parameter 𝑀, the estimated 
performance deterioration brought on by the migration of VM𝑗 can be denoted as 𝐶ௗೕ

 and the total 

CPU capacity that VMs have demanded over the course of their lifetime is 𝐶௥ೕ
. 

 

(2) SLATAH (SLAV Time per Active Host): Equation (18) indicates that it refers to the 
portion of the entire SLA violation period that the CPU operation of the AH attained 100%. 

 

𝑆𝐿𝐴𝑇𝐴𝐻 =
1

𝑁
෍

𝑇௦೔

𝑇௔೔

ே

௜ୀଵ

 
(18) 
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Here, the amount of host in the data center is 𝑁, the entire time that host 𝑖 of the CPU utilization 
has reached 100% can be 𝑇௦೔

, which leads to SLA violations, and the over-all time that host 𝑖 has 

been in an active state is 𝑇௔೔
. The VM on the host unable for the given demanded CPU ability due 

to the active host's 100% CPU load, which is the rationale behind the SLATAH. Two efficient 
techniques to independently assess the SLA violation are PDM and SLATAH. Consequently, the 
definition of a SLA violation is expressed as: 

 

𝑆𝐿𝐴 = 𝑃𝐷𝑀 × 𝑆𝐿𝐴𝑇𝐴𝐻 (19) 

SLAVs and energy consumption are included in the efficiency of energy. Reducing consumption 
of energy and SLAVs in data centers could be attained through enhancing energy efficiency. 
Consequently, the following is the definition of the energy efficiency metric: 

 

𝐸 =
1

𝑃 × 𝑆𝐿𝐴
 

(20) 

Here, the data center's power consumption can be denoted as 𝑃, SLA for a data center's SLA 
violation, and 𝐸 for a data center's energy efficiency. Equation (20) demonstrates that energy 
efficiency increases with increasing 𝐸. 

 

Data centers can increase their energy efficiency by using virtual machine migration. Nonetheless, 
there are a few major issues that need to be resolved: When a host is thought to be moderate or 
low-loaded, it is decided to maintain the rest of the VMs on that host unaffected. (3) When a host 
is thought to be low-loaded, all of the VMs on that host need to be transferred to a different host. 
(4) Choosing which VM or more could be transferred from the host's maximum loaded; (5) 
locating the novel host for every VM transferred from the maximum loaded or low-loaded hosts. 

 

Data center hosts using ATFCM clustering are classified into 4 types based on the load they handle: 
extremely low load, low load, medium load, and maximum load hosts. Let us assume that the set 
of n machines to be separated based on CPU use is represented by the notation VM =

 {vmଵ, . . . , vm୬}, here vm୧ ∈ ℝୢ for i =  1, . . . , n; the cluster count is denoted by c, when 2 ≤

 c <  𝑛 . The difficulty of fuzzy clustering is illustrated in Equation (21) [Gosain and Dahiya 
2016]. 

 

𝑃: 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽௠(𝑈, 𝑉) = ෍ ෍൫𝑢௜௝൯
௠

௖

௝ୀଵ

௡

௜ୀଵ

ฮ𝑣𝑚௜ , 𝑣௝ฮ
ଶ
 

(21) 

Here, the set of centroids can be represented by 𝑉 =  {𝑣ଵ, . . . , 𝑣௖}, and the centroid of cluster j is 
𝑣௝; (the host processing power at time 𝑖 can be denoted as 𝑣𝑚௜ , through the empirical value, the 

size of 𝑛 could be chosen). Then, the correlation matrix of all VM i to each cluster j is represented 
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as U = 𝑢௜௝ . The fuzzy factor, m, which represents the weighting exponent, expresses the extent to 

which the clusters overlap; for 𝑖 =  1, . . . , 𝑛 and 𝑗 =  1, . . . , 𝑐, .The Euclidean distance separating 

the centroid, 𝑣௝ , and the VM, 𝑣𝑚௜, is given by 𝑑 = ฮ𝑣𝑚௜ , 𝑣௝ฮ
ଶ
, when 𝑚 >  1. It is possible to 

minimize 𝐽௠, an estimated model of V and U, in the following way [Pérez-Ortega et al., 2023],  

 

𝑣௝ =
∑ ൫𝑢௜௝൯

௠௡
௜ୀଵ 𝑣𝑚௜

∑ ൫𝑢௜௝൯
௠௡

௜ୀଵ

 1 ≤ 𝑗 ≤ 𝑐 
(22) 

𝑢௜௝ =
1

∑ ൭
ฮ𝑣𝑚௜ , 𝑣௝ฮ

ଶ

‖𝑣𝑚௜ , 𝑣௞‖ଶ൱

ଵ
௠ିଵ

௖
௞ୀଵ

 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑐 
(23) 

When the vectors that belongs to ℝୢ  space are:  𝑣𝑚௜and 𝑣௝  are expressed as, 

 

𝑣𝑚௜ = (𝑣𝑚ଵ, … , 𝑣𝑚ௗ), 1 ≤ 𝑖 ≤ 𝑛 (24) 

𝑣௝ = (𝑣ଵ, … , 𝑣ௗ), 1 ≤ 𝑗 ≤ 𝑐 (25) 

Equations (26) to (28) formalize the fuzzy clustering limitations, 

 

𝑢௜௝ ∈ [0,1], 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑐 (26) 

෍ 𝑢௜௝

௖

௝ୀଵ

= 1, 1 ≤ 𝑖 ≤ 𝑛 
(27) 

0 < ෍ 𝑢௜௝

௖

௝ୀଵ

< 𝑛, 1 ≤ 𝑗 ≤ 𝑐 
(28) 

According to equation (23) a 𝑣𝑚௜ degree of membership in a cluster j has value from zero to one. 
According to equation (26), the total of a degrees of 𝑣𝑚௜ membership in various clusters must 
equal 1. Lastly, the following definitions might be applied to the 3 thresholds in the ATFCM 
technique: (𝑇ℎ௟௢௪ , 𝑇ℎ௠௘ , 𝑎𝑛𝑑𝑇ℎ௠௔௫). 

 

𝑇ℎ௟௢௪ = 0.5(1 − 𝑟 ∗ 𝑑) (29) 

 𝑇ℎ௠௘ = 0.75(1 − r ∗ d) (30) 

 𝑇ℎ௠௔௫ = 1 − r ∗ d (31) 

Here, an algorithmic parameter 𝑟 ∈  ℝା indicates the rapid manner of the system combines VMs. 
As it consolidation occurs, higher 𝑟 results in reduced SLA breaches but higher energy 
consumption. 
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5.3. STOCHASTIC DYNAMIC SCHEDULING USING PGL 

At the starting point of each scheduling period, the whole system functions as follows: (1) the 
RMS received task demands as well as task parameters such as computation, bandwidth, and SLA 
requirements. (2) The DRL model uses these specifications along with the host attributes in 
RMS to detect the subsequent scheduling decisions. (3) Using the DRL model's output, the 
constraint satisfaction module determines potential migration and scheduling choices. (4) The IoT 
gadget is notified through the RMS to submit its request for the new tasks directly to the associated 
edge or cloud server that is scheduled for that task. (5) The DRL framework's loss function is 
calculated, and its parameters are adjusted. Use a NN function approximator or Q-Table to simulate 
this function. The latter will give an objective strategy that is unadaptable in stochastic 

environments. In contrast, the methodology uses 𝐿𝑜𝑠𝑠௜
௉ீ as a signal for updating the network while 

attempting to estimate the policy itself and improve it via PG approaches. Utilize a BiRNN to 

estimate the function from Statei to 𝐴𝑐𝑡𝑖𝑜𝑛௜
௉ீfor each SIi interval. The power of the BiRNN lies 

in its capability to represent complicated activist correlations among both inputs and outputs. 
Either policy (actor head) as well as cumulative loss after the (critic head) present interval are 
expected by a single net. By continuously pre-processing and sending the interval state to the 
BiRNN framework that includes the loss and penalties for updating the network parameters, the 
optimum scheduling option for each scheduling intervals may be determined. As a result, the 
framework can instantly alter to the needs of the operator, the setting, and particular applications. 
The Gated Recurrent Unit (GRU) [Supriya & Dhanalakshmi, 2023]., which models the temporal 
features of the task and host features, such as the hosts' CPU, RAM, and bandwidth capacity, and 
the task's demands, is used to build the recurrent layers.  
A bidirectional RNN model for forward order input plus another BiRNN framework for the reverse 
order of input constitute the BiRNN framework. While the reverse order utilizes the input order 
from n to 1, the forward order utilizes the input order from 1 to n. The LSTM cell has evolved into 
the GRU, which has fewer parameters. Because GRU contain gating units, they can adaptively 
extract dependencies from large amounts of sequential VM information without losing any of the 
data from the previous segment of the order [Sharma and Casas 2020].  
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FIGURE 3. GRU CELL STRUCTURE 

Compared to the LSTM cell, the GRU cell's architecture is substantially easier as seen in Figure 
5. Tasks on GRU cells is defined by equations (32–35).  

𝑍௧ = 𝑠𝑖𝑔𝑚(𝑊௭ ∗ [𝑋௧, 𝐻௧ିଵ] + 𝐵௭) (32) 

 𝑅௧ = 𝑠𝑖𝑔𝑚(𝑊௥ ∗ [𝑋௧, 𝐻௧ିଵ] + 𝐵௥) (33) 

 𝐻ഥ௧ = 𝑡𝑎𝑛ℎ(𝑊୦ ∗ [𝑋௧, 𝑅௧ ⊙ 𝐻௧ିଵ] + 𝐵୦) (34) 

𝐻௧ = 𝑍௧ ⊙ 𝐻ഥ௧ + (1 − 𝑍௧) ⊙ 𝐻௧ିଵ (35) 

The Reset gates, Previous hidden state, Update gate, Current hidden state are represented as 𝑅௧ , 
𝐻ഥ௧, 𝑍௧, 𝐻௧ respectively, The weight matrices for update and reset gates are denoted as 𝑊௭ and 
𝑊௥.The weight matrix for hidden gate is 𝑊௛. The bias matrices for hidden state, reset gate, and 
update are denoted as 𝐵௛, 𝐵௥ , 𝐵௭ respectively are all examples of bias matrices.  

 

The element’s feature e is denoted as 𝑓௘, and the values for f feature  maximum and minimum are 
denoted as, max

௙೐

 and min
௙೐

 respectively. 2 heuristic-based scheduling policies: LR for allocating 

tasks and MMT (Maximum-Migration-Time) for TS are used to determine these minimum and 
maximum values according to a sample dataset [27]. Subsequently, the standardization of features 
is carried out using equation (36). 

 

𝑒 = ቐ

0 𝑖𝑓 max 𝑓௘ = min 𝑓௘

min ൬1, 𝑚𝑎𝑥 ൬0,
𝑒 − min 𝑓௘

max 𝑓௘ − min 𝑓௘
൰൰ , 𝑒𝑙𝑠𝑒

 
(36) 

The BiRNN model takes this pre-processed input, decreases it, and then runs it via the dense layers. 
Through initially generating the ordered list of hosts SortedHostsi with reducing probabilities in 
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Oi for all i, the output obtained O is transformed to 𝐴𝑐𝑡𝑖𝑜𝑛௜
௉ீ .Gradients have a negative sign to 

lower the overall loss and are balanced to this capacity. The MSE (Mean Square Error) of the 
estimated cumulative loss compared to the cumulative loss following an a single-stage is the 2nd 

gradient element. During scheduling interval, the output 𝐴𝑐𝑡𝑖𝑜𝑛௜
௉ீis transformed by CSM as 

𝐴𝑐𝑡𝑖𝑜𝑛௜and delivered to the RMS. Consequently, the BiRNN has a forward pass for every interval. 
By continuously pre-processing and sending the interval state through the BiRNN model 
incorporating the loss and penalty for updating the network parameters, the optimum scheduling 
option for every scheduling intervals may be determined. As a result, the framework could 
promptly alter to the desires of the operator, the setting, and certain applications. 

6. RESULTS AND DISCUSSION  

Describe the experimental setting, performance metrics, dataset, and provide an extensive 
study of the outcomes by contrasting the model with several typical techniques in this section. 
To enable the utilization of characteristics like timing of response, expenses, and edge node 
power, CloudSim are utilized. Further software was created for the input pre-processing, 
output conversion, and Constraint Satisfaction Module. In CloudSim, the host and task 
monitoring services are used to determine the loss function. The tasks, or cloudlets, are 
allocated to VMs in the simulated setting, and the VMs are subsequently allotted to hosts.  

DATASET:  Coudlets, are allocated to VMs in the simulation setting, and VMs are 
subsequently assigned to hosts. In the edge-cloud setting where the cloudlets are currently 
established that takes into consideration switching from tasks to VMs by assigning the ith formed 
tasks to the ith generated VM and discarding the VM after the related task is finished. The freely 
available, actual Bitbrain dataset is the basis for the dynamic workload generation for tasks. Real-
time resource usage figures of business-critical workloads hosted on Bitbrain architecture are 
available in Bitbrain's dataset [28]. The logs of more than 1000 VM workloads hosted on 2 distinct 
types of machines are included in this dataset because they exhibit actual architecture utilization 
patterns, which are helpful in building accurate input FVs for learning models. 

  

Workload statistics, with the amount of required CPU cores, CPU utilization by MIPS, and 
requested RAM by network (receive/transmit) and disk (read/write) bandwidth features, are 
included in the dataset for all time-stamp (separated by five minutes). The BitBrain dataset is 
available for download at http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains. Separate the 
dataset into 2 parts, with respective VM workloads of 25.00% and 75.00%. The R2N2 network is 
trained on the larger segment, then evaluation, sensitivity assessments, and comparing with other 
relevant research are conducted on the previous separations. Microsoft Azure IaaS cloud service 
is the basis of the cloud layer's cost model [Shen et al., 2015]. 

 

Metrics: The metrics listed below have been utilized for assessing the outcomes.  

ART is formulaized as follows,  
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𝐴𝑅𝑇 =
∑ 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒(𝑡)௧∈௟೔శభ

|𝑙௜ାଵ)
 

(37) 

The expression of SLAV as given below,  

𝑆𝐿𝐴𝑉 =
∑ 𝑆𝐿𝐴𝑉௜ . |𝑙௜ାଵ|௜

∑ 𝑙௜௜
 

(38) 

Average Task Completion Time: It is calculated by incrementing the typical TS, task 
performance, and host response times for the tasks that were executed throughout the maximum 
new scheduling interval.  

The total tasks accomplished, the % of tasks completed in the estimated processing time 
(depending on specified MIPS), the percentage of migration of tasks during all interval, and the 
overall time spent on migrations during all intervals. 
Results comparison Methods Several heuristics have been put out in the context of dynamic 
scheduling. These are association of several sub-heuristics for various sub-issues, like task/VM 
selection and host overload detection, from which the top 3 heuristics have been chosen. Best Fit 
Decreasing (BFD) heuristics are used by all of these differences to determine the target host. 
Moreover, compare the results with 2 common standard RL procedures that are implemented in 
the existing research. 
DDQN: The DQL-RL strategy has been applied in numerous study. 
 

DRL (REINFORCE):PG-REINFORCE technique through FC (Fully Connected) NN. 

 
FIGURE 4. ART VS. SCHEDULING TECHNIQUES 

Figure 4 illustrates that the suggested solution offers the lowest average response time compared 
to all alternative scheduling policies. The suggested approach outperforms the best foundation 
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algorithm, A3C-CCTSO-R2N2, by 5.958%. Given that the suggested model assigns jobs by RMS 
(MDSO) doesn’t need several migrations and incorporates AMT into the loss function, it clearly 
accepts information regarding whether a node is an edge or cloud node. This indicates that although 
existing approaches like DDQN, REINFORCE, A3C-R2N2, A3C-CCTSO-R2N2, and A3C-
MDSO-R2N2 have higher ART of 8.74 ms, 8.20 ms, 7.46 ms, 6.92 ms, and 6.21 ms similarly, the 
suggested structure has a less ART of 6.21 ms (Refer Table 1).  

TABLE 1. ART VS. SCHEDULING TECHNIQUES 

Scheduling Methods Response Time (ms) 
DDQN 8.74 

REINFORCE 8.20 
A3C-R2N2 7.46 

A3C-CCTSO-R2N2 6.92 
A3C-MDSO-R2N2 6.21 

A3C- FEBOA-BiRNN 5.84 

 
 

FIGURE 5. FRACTION OF SLA VIOLATIONS VS. SCHEDULING TECHNIQUES 

The suggested model has 20.58% fewer SLAV than the A3C-MDSO-R2N2 policy, as illustrated 
in Figure 5. Once more, this is the result of fewer migrations and clever TS to avoid significant 
loss values from SLAV. The suggested system has lower SLAVs (0.027), while other approaches 
(see Table 2) have higher ART of 0.072, 0.064, 0.052, 0.040, and 0.034, respectively. These 
approaches include LR-MMT, MAD-MC, DDQN, REINFORCE, A3C-R2N2, A3C-CCTSO-
R2N2, and A3C-MDSO-R2N2. 

TABLE 2. FRACTION OF SLA VIOLATIONS VS. SCHEDULING TECHNIQUES 

Scheduling Methods Fraction of SLA Violations 
DDQN 0.072 
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REINFORCE 0.064 
A3C-R2N2 0.052 

A3C-CCTSO-R2N2 0.040 
A3C-MDSO-R2N2 0.034 

A3C- FEBOA-BiRNN 0.027 

 
FIGURE 6.NUMBER OF COMPLETED TASKS VS. SCHEDULING TECHNIQUES 

As can be seen in Figure 6, the suggested approach has a greater percentage of cloudlets completed 
and can guarantee cloudlets are assigned to the fewest number of cloud VMs in order to minimize 
costs. The total amount of tasks completed for the suggested framework is 1478, while the number 
of finished tasks for other approaches, including DDQN, REINFORCE, A3C-R2N2, A3C-
CCTSO-R2N2, and A3C-MDSO-R2N2, is 895, 978, 1127, 1150, and 1264, respectively (refer to 
Table 3). 

TABLE 3. NUMBER OF COMPLETED TASKS VS. SCHEDULING TECHNIQUES 

Scheduling Methods Fraction of SLA Violations 
DDQN 895 

REINFORCE 978 
A3C-R2N2 1127 

A3C-CCTSO-R2N2 1150 
A3C-MDSO-R2N2 1264 

A3C- FEBOA-BiRNN 1478 
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FIGURE 7.NUMBER OF TASK MIGRATION IN EACH INTERVAL VS. SCHEDULING 

TECHNIQUES 

The outcomes of the number of task migrations in relation to simulation time are presented in 
Figure 7. Numerous methods, comprising DDQN, REINFORCE, A3C-R2N2, A3C-CCTSO-
R2N2, A3C-MDSO-R2N2, and A3C-FEBOA-BiRNN, are used to analyze the outcomes. It 
demonstrates that, for a 20 (hour) simulation time, the suggested system has less task migrations14 
than other approaches like DDQN, REINFORCE, A3C-R2N2, A3C-CCTSO-R2N2, and A3C-
MDSO-R2N2—which have 30, 25, 20, 18, and 16 task migrations (Refer Table 4).  

TABLE 4. NUMBER OF TASK MIGRATION VS. SCHEDULING TECHNIQUES 

Scheduling 
Methods 

Simulation time (Hours) 
0 5 10 15 20 

DDQN 22 28 32 25 30 
REINFORCE 17 22 30 19 25 
A3C-R2N2 15 18 25 17 20 

A3C-CCTSO-R2N2 11 15 20 14 18 
A3C-MDSO-R2N2 9 13 18 12 16 

A3C- FEBOA-
BiRNN 

8 11 15 11 14 
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FIGURE 8.TOTAL MIGRATION TIME IN EACH INTERVAL VS. SCHEDULING 

TECHNIQUES 

The outcomes of the task's interval migration time in relation to simulation time are presented in 
Figure 8. Numerous systems, comprising DDQN, REINFORCE, A3C-R2N2, A3C-CCTSO-
R2N2, A3C-MDSO-R2N2, and A3C-FEBOA-BiRNN, are used to analyze the outcomes. The 
results indicate that the suggested system takes 3.70 seconds, while other approaches (refer to 
Table 4) take 9.50 seconds, 7.80 seconds, 7.50 seconds, 5.0 seconds, and 4.30 seconds for a 
simulation time of 20 hours. These methods include DDQN, REINFORCE, A3C-R2N2, A3C-
CCTSO-R2N2, and A3C-MDSO-R2N2.  

Table 5. Total Migration Time in each interval vs. scheduling techniques 

Scheduling 
Methods 

Simulation time (Hours) 
0 5 10 15 20 

DDQN 10 11.5 12 13 9.5 
REINFORCE 7 8.5 10 11 7.8 
A3C-R2N2 6.2 7.7 8 9 7.5 

A3C-CCTSO-R2N2 5.5 6 7.2 7.8 5 
A3C- MDSO-R2N2 4.8 5.4 6.3 6.9 4.3 

A3C- FEBOA-
BiRNN 

4.1 5.2 5.8 6.1 3.7 

 

7. CONCLUSION AND FUTURE WORK  

Create a structural system model in this study for scheduling in Edge-Cloud background using 
RNNs. The Algorithm for FEBOA has been presented to minimize metrics like AEC, ART, 
AMT, and SLAV. VM has the ability to select and support the superior candidate. FEBOA is 
a planned population-based metaheuristic algorithm. The two stages of FEBOA are 
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exploration and exploitation. The weight of the FEBOA is produced via the triangular fuzzy 
membership function. Data centers can increase their energy efficiency by using 
VM migration. For VM migration with data centers, ATFCM clustering is established. For the 
purpose of stochastic dynamic scheduling, PG-RL (A3C) is used. Through asynchronous 
updates, A3C enables the scheduler to swiftly adjust to vigorously varying backgrounds, and 
BiRNN can rapidly learn network weights by taking use of the temporal behaviors of tasks 
and workloads. CloudSim uses the real-world Bitbrain dataset to demonstrate the model's 
superiority over current approaches. Metrics such as Average Task Completion Time, SLAV, 
and ART are used to quantify the results. Future research can, however, focus on scalable 
RL models such as Impala. Additionally, make plans to look into the security and privacy of 
information in the future. 
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