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Abstract:  
Digital neural networks are an alternative computing structure to the traditional von Neumann 
architecture and offer enhanced performance when many inputs need to be processed in parallel. 
This occurs in complex data sets or data sets composed of sensory (e.g. visual or auditory) 
information. This paper presents the results from testing a small proof-of-concept digital neural 
network designed in VLSI hardware. 
Index Terms—Neural Network, Digital Neural Nets, Leaky Integrate-and-Fire, VLSI, Address-
Event Representation (AER), Neuromorphic.  
1.0 INTRODUCTION 
The field of neuromorphic computing has grown out of prolific research done on 
neurotransmission and the recognition that, while the clock speed of modern computers may be 
orders of magnitude faster than the rate at which neurons are capable of firing, the brain is still 
far ahead of computers in terms of its ability to process complex information. Recognizing this, 
scientists developed neural networks: models of the brain's processing scheme. Neural networks 
were developed by studying the organic brain’s ability to parse and process a myriad of inputs in 
parallel and produce meaningful cognition from the data. Contrary to a traditional von Neumann 
model, which uses a series of sequential instructions, neural networks rely on thousands to 
millions or billions of neurons - the basic processing unit of the brain - connected through 
synapses to form a series of layers and loops. A change in potential across a neuron membrane 
causes a spike to occur, propagating out to each connected neuron. The spike is the currency of 
neural computation, while the strength of the connection between neurons is the programmable 
framework.  
 Much like a biological brain can form new or stronger memories as it learns and adapts, 
digital neural networks can be ’trained’ to accomplish some tasks, by strengthening or 
weakening these connections. These tasks can vary from deciphering hand-written text, or 
predicting the outcome of a sports match given any number of parameters, such as time of day, 
month, weather conditions, etc. One advantage of neural networks is they can process 
information in parallel as a system rather than the sequential method of traditional processors. 
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This advantage can be fully realized by constructing a neural network model in software. 
However, while simpler to build, neural networks become extremely inefficient when built-in 
software and run on traditional processors because the traditional von Neumann instructions 
must be used to simulate every potential change sequentially. The required time can be increased 
by using multi-core processors or supercomputers, but it still grows out of hand as the number of 
neurons reaches the millions or billions required for significant neural computation. Indeed, it 
recently took the K supercomputer in Japan, which contains 82,944 processors, 40 minutes to 
simulate 1 second of real-time computation of a network containing only around 1% of the 
neurons in the brain. However, this is a popular approach because of the ease of implementation 
and works well for simpler applications. For example, the Qualcomm Zeroth is another example 
of a deep-learning device capable of learning and adapting to its surroundings in real time. The 
Zeroth project achieves this solely in software, however, meaning the processing all takes place 
on Qualcomm’s multicore Snapdragon processor, and the ’spikes’ produced in a biological 
system are simulated in software. The Zeroth project focuses its research on the fluid 
incorporation of the software into existing systems, giving them the ability to learn things like 
recognizing and translating handwriting into text and analyzing the contents of images.  
 Instead of neural networks in software, neuromorphic engineers are striving to build 
native hardware for neural networks which will allow the efficient implementation of these 
systems An additional advantage of implementing these systems in hardware is that memory 
becomes dynamic - stored in the synapses - so there is no need to institute an expensive (in time, 
power, and space) memory system. Additionally, because neural networks use spikes rather than 
constant high or low lines, they require much less power. The ability of neural networks to a) 
efficiently process so many inputs in parallel, b) effectively eliminate the processor-memory 
bottleneck, and c) perform these operations in a low-power framework will lead to an entirely 
new field of computing, one where systems will efficiently harness neural nets to vastly increase 
computing productivity for certain tasks.  
 Neuromorphic computing was first developed by Carver Mead in the 1980s at Caltech. 
Mead recognized that the brain's entire communication system was based significantly on the 
propagation of electric signals and set out to recreate what he observed in hardware, specifically 
focusing on the visual system . Since then, several other companies and re- 2 search labs have 
taken on the endeavor of designing cognitive computing platforms inspired by biological neural 
networks. In neuromorphic computing, several different parameters can be used in system 
design. The first is the selection of which neuron model to use. Neuron models range from the 
complex Hodgkin-Huxley model which encompasses every aspect of neuron behavior to the 
perceptron which models simple binary behavior. Engineers must choose between a model 
which allows simple implementation, while also yielding enough complexity to form a variety of 
systems.  
 One of the most popular models for neural computation is the Leaky Integrate and Fire 
(LIF) model, which mimics the capacitive-like buildup and discharge between biological 
synapses in an organic brain but can still have a relative implementation. For example, IBM just 
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created the True North chip, a clockless, 4,096 core processor, with each core handling 256 
neurons, and in turn, each neuron creating 256 synapses. This works out to be just over four 
billion artificial LIF neurons and 1 trillion synapses. Several other researchers, including Gert 
Cauwenberghs at UCSD, and Kawabena Boahen at Stanford have chosen the LIF neuron model 
as well although their implementations are slightly different. Meanwhile, other researchers, such 
as Alice Parker at USC are using carbon nanotubes to mimic neuron models that replicate many 
more of the complex behavioral patterns. Fig. 1 shows an example of a digital implementation of 
a LIF model. Fig. 2 shows an equivalent representation in analog. 
 

 
Fig. 1. Example of digital implementation of an LIF neuron. Design shown from   

 
Fig. 2. Example analog implementation of an LIF neuron. Design shown from   

 
However, the largest problem for neuromorphic systems is finding ways to deal with the 
complex interconnection schemes of neurons. Human brains contain over a trillion synapses 
(neural connections) and even for smaller-scale systems attempting to replicate this is difficult 
with the limited metal layers in CMOS technology (one reason Dr. Parker has moved to carbon 
nanotubes). This is especially true for the process used in this project, which contains only 3 
metal layers. Therefore, one solution is to take advantage of the speed of silicon and develop a 
system that time-multiplexes the neural spikes on one bus. This means that a single bus is 
implemented as a communication system for each neuron. Spikes are passed on the bus as they 
occur controlled by an arbiter. This allows the system to function effectively without the 
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headache of all the wires. This implementation is typical for neuromorphic systems and has 
become the standard for cross-chip communication interfaces and is known as Address Event 
Representation (AER). This is because each packet of information contains the destination 
address of the event so that the routing system knows where to send the chip.  
 Because of the number of neurons implemented, True North and other networks require 
an extremely complex learning algorithm, because there are no traditional programming 
languages that can be applied to these chips  . As one IBM fellow said, ”Given this 
unconventional computing paradigm, compiling C++ to True North is like using a hammer for a 
screw”  . Rather neural networks must ”learn” how to respond. They are given sets of sample 
data and then they learn how to respond to this data with the hope that this training algorithm 
will apply to future data sets as well. Each neuron is connected to another neuron with a specific 
strength or weight and this weight determines the magnitude of the jump in membrane potential. 
The training algorithm adjusts these weights to adjust the behavior of the network. One popular 
training algorithm for neural networks, backpropagation, involves the computation of the error 
between the desired and actual output. This adjustment is performed on the weights of the last 
layer and then propagated backward to adjust the next layer. However, this model of 
programming is a) this is a completely separate paradigm of programming which is difficult for 
many programmers to learn after a lifetime of programming in sequential languages and b) this 
method requires a long amount of time due to the numerous simulations that must be run.  
 What follows is the description of an attempt to implement many of the above principles 
on a digital VLSI chip. This paper will discuss the design and implementation of that chip. 
Several features of that design include:  
• The design contains 16 separate neural processing units that replicate a LIF neuron.  
• Custom interconnection system based on published AER systems for transferring spikes.  
• Programmable leak and threshold values.  
• Theoretically scalable if new chips were to be fabricated.  
• Off-chip EPROM for storing weights.  
• Input can either come from a second EPROM or just a wired signal (e.g. a different chip).  
• Output can also either come from a second (or third) EPROM or to a wired signal. Note that the 
output lines for the input and output lines are wired together for efficient pin implementation. 
This implementation has been named the CAT design by the authors.  
 This paper will go over the details of the implementation and the final layout and design. 
First, the design of the individual neuron and the neuron communication system will be 
presented. Second, the external interface will be discussed. Finally, the testing protocol will be 
described. 
3.0 METHODS 

Neuron  

In this design, a LIF model was implemented based on its simplicity. In Izhikevich’s 2004 
paperanalyzing the cost and biological realism of various models the LIF model was found to be 
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the model with the lowest possible implementation cost. Since space was a large concern, we 
chose to use this model. The implementation here also uses a digital design. Most neuromorphic 
chips today (a principal exception being the IBM TrueNorth chip) use analog circuits since they 
require lower power and are more space-efficient. However, we chose a digital design because of 
the ease of construction and the testing and fabrication process available.  
The diagram of our design is shown in Fig. 3. We have an enabled register that communicates 
with the weight bus to acquire signals that are sent from other neurons. We then have an 
accumulator unit that contains the current membrane potential. It checks the register output every 
cycle and adds the (signed) value to the current counter if there is a non-zero output detected. It 
then sends a reset signal to the register so this value is not added again the next clock cycle. If 
there is no register output then the leak is subtracted. It also checks if this potential is over the 
threshold for every clock signal. If it is, it will tell the communication block to begin 
communicating with the Arbiter. This design was based on the one shown above in Fig. 1 (and 
first presented in  ). 

 
Fig. 3. Team CAT LIF neuron implementation 

Several modifications were made to the standard LIF model to make it more biologically 
realistic. For example, we have a programmable threshold and leak values. These values come in 
on the standard weight bus from the input line. Two programming lines tell the neuron to place 
these values in the leak or threshold values rather than add them to the accumulator. The only 
other inputs to the neuron are a global clock and a reset line.  

Communication System  

In this case, a time-multiplexed design system was implemented. This system was chosen 
because the final size of the LIF neuron was unknown during the design process but a total area 
limit of 2300µm ×2300µm was placed on the chip fabrication. As it was impossible to know how 
many neurons would be placed on the final chip during planning an easily scalable 
communication system was required. It was also anticipated that this would help constrain the 
design size and increase the number of neurons implemented as wiring a data line between each 
set of neurons would have been exceedingly difficult given only 3 layers of metal available. 
Finally, AER is an industry-standard neuromorphic engineering protocol and while the CAT 
team hoped to create a unique design, they also wanted to take advantage of the work done 
before them. The CAT design is not exactly AER standard but mirrors the methodology. The 
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principle of AER is that neural communications are most often in the range of hundreds to 
thousands of Hz, whereas silicon operates in MHz Neuromorphic systems can take advantage of 
this speedup by multiplexing spikes across time. Neurons will still function the same but now a 
single bus can be used for all signals. The CAT design implemented a token-based arbitration 
system to control this bus. The design is shown in Fig. 4. There are three I/O buses to the neuron 
sets - request, acknowledge, and enable. The request line is a one-hot line to each neuron which 
tells whether that neuron has fired since the last check. Once the arbiter has processed this 
request line it sets the corresponding acknowledge line high to indicate to that neuron that it can 
pull down its request line. The enable line is also one-hot encoded and is sent to each neuron-
enabled register to indicate when that neuron should be reading the bus. The request lines are 
checked sequentially, that is there is a token that is cycled through each neuron. This token is 
incremented every 16 clock cycles to allow a neuron to send out a signal to each If the neuron’s 
request line is not high then the Arbiter still uses those 16 clock cycles to send out the input data, 
but the weight EPROM is turned off. If the neuron that is currently being checked does have a 
request line active then the weight EPROM will be activated and the address will be calculated 
from the index of the sending and receiving neuron. The signed index is returned and added to 
the input before being sent out on the weight bus. This system of logically cycling through the 
sending and receiving neurons allows the input to be set up sequentially so the user knows 
exactly which neuron they are sending each weight to. It also means that a fair token system is 
implemented where each neuron is given equal priority.  

External Interface and Scalability  

Fig. 5 shows the external interface to the CAT chip. The main component of the external 
interface is an EPROM where the weights are stored and 2-bit program input to tell the network 
what mode to be in. The EPROM interface consists of an 8-bit bus and a 10-bit address line. The 
EPROM has a14 bit address line, but the top segment of the address space is not used so these 
pins should be tied low. Every clock cycle, if a spike occurs in the neuron currently being 
checked by the arbiter, the chip will send out an address consisting of a 1 followed by four bits 
containing the index of the receiving neuron and then the index of the sending neuron. If no 
spike occurs an address of 0 is sent out, meaning a 0 should always be stored in address 0. If one 
is trying to program 4  
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Fig. 4. Team CAT token-based bus arbitration system the threshold of the neurons, the 
programming bits can be set to ’b01, and the chip will send out an address of 1 to the EPROM, 
so the desired threshold should be stored there. The desired leak can be stored in address 2 of the 
EPROM and can be programmed by setting the programming bits to ’b10. The threshold and 
leak values can be set to a default value of 60 and 2 respectively by setting the programming bits 
to ’b11. The programming bits should be set to ’b00 for normal operation. Note that the weights 
will not overwrite these values because of the leading 1 on those addresses.  

 
Fig. 5. External interface to the CAT chip the other I/O consists of a clock, reset the input and 
output lines, another address line, and debugging signals. The input signal is applied to 
whichever signal is currently being checked by the arbiter. It is simple to control which signal is 
applied to which neuron, by simply using another EPROM and storing the values sequentially 
through the address space. The second address line just increments with every clock cycle 
sequentially after a global reset. The output line can be wired up similarly, it can either be read 
by an external program or debugger, or wired up to an external RAM with the second address to 
store the output of the program for later viewing and analysis. In the case that either the input or 
output is stored or loaded from external memory, the enable lines of those chips should be tied 
active. Alternatively, the CAT system was designed to be scalable with other CAT chips. Most 
biological neural networks, contain millions or billions of neurons, meaning that our system of 
16 neurons will not be able to recreate anything on a biological scale. Therefore, the output of 
one CAT line can be easily tied to the input line of another chip for a simple scalable design. 
However, they are not scalable in the sense that a neuron on one chip can target a neuron on 
another chip, merely that one chip can be built to extend and interpret the output of a previous 
chip. With this sort of design, a first chip could take care of low-level processing and pass it on 
for more high-level processing on the second chip. The debugging outputs consist of: 
• The request lines of each neuron to see when they are spiking  

• The token counter in the Arbiter to ensure that it is properly looping through the neurons  

• The accumulator value of neuron 0 to ensure that a neuron is functioning properly.  



A PROOF-OF-CONCEPT DIGITAL LEAKY INTEGRATE-AND-FIRE NEURAL NETWORK IN HARDWARE - THE CAT DESIGN 

1425 
 

VLSI Implementation  

 The CAT design will be fabricated in a 600nm process. The final layout of the chip is 
shown in Fig. 6. The layouts for the neuron and the arbiter were also developed during the 
debugging process. However, to save space in the final design we implemented all 16 neurons 
and the arbiter in one top module.  

 
Fig. 6. Final chip layout of the CAT chip 

The design was based on a custom standard cell library. The full specifications of this library can 
be seen in the library specifications document. However, in brief, the following cells were 
designed:  
• ADDER1X: 1 bit adder 5  

• AOI 22: And or Inverter with 4 inputs  

• BUF (X4, X8): Buffer cell  

• DFF: D flip flop with asynchronous reset  

• FILLER (1, 2, 4, 8): Filler cell for extra space  

• INV (X1, X2, X4, X8): Inverter cell  

• MUX2 INVX1: Inverting multiplexer  

• NAND2(X1, X2), NAND3X1: Various NAND cells  

• NOR2X1: 2 input NOR gate  

• TIEHI: Cell to tie lines high  

• TIELO: Cell to tie lines low  

• XOR2X1: 2 input XOR cell  

The decisions for which cells to implement in our library came from logical analysis as well as 
the characterization and synthesis of various other libraries. The designers knew a DFF and basic 
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logic cells such as NAND, INV, and NOR were going to be needed because we had register files 
as well as various logic. The FILLER, TIEHI, and TIELO cells are standard library cells for 
most chip designs. The ADDER was implemented because the designers anticipated the neuron 
would need one for the accumulator. The other cells were chosen after synthesizing the Verilog 
code used to build the design with several other libraries. The Foo and OSU libraries were both 
provided by the University of Utah and these libraries contained various other cells. Originally, 
the Verilog code for a counter, a decoder an adder, a mux, a simple state machine, and the 
neuron and arbiter were synthesized using the 2 libraries and the other cells were chosen based 
on analysis of the space and timing of the resulting structural Verilog.  

Testing  

 Several Verilog test benches were designed for the project. For more details on these 
testbenches see the design specification document. Individual simulations were run for the 
arbiter and neuron to ensure the proper functionality of both pieces. For the neuron, the 
simulation tested that the neuron could correctly add incoming weights, send off a spike when 
the weight went over the threshold, and be reset. For the arbiter the testbench ensured that the 
arbiter correctly cycled through the neurons (both receiving and sending), correctly 
acknowledged the neurons that had a request line high, correctly interfaced with the EPROM, 
correctly combined the EPROM and input data for the data bus, output the correct data, and 
enabled the correct neuron to receive data from the bus. The overall testbench tested all of the 
above as well as ensuring that the entire system could correctly interpret an input (i.e. a high 
input created a sequence of spikes in the neurons and a negative input correctly inhibited the 
neurons). All of these variables were checked by analyzing waveforms. While it is important to 
eliminate human error by developing self-checking testbenches, in this case, it was judged that 
the development cycle was short enough, and the chip’s nature was complex and non-intuitive 
enough that a self-checking testbench would have been more hindrance than help.  
 Instead of developing a self-checking testbench, the designers implemented an idealized 
version of the network in Python. This version was developed and tested and then the hardware 
version was tested for reliability against the network by passing both programs the same input 
and weight files and analyzing the output. This method of testing also allows the users to use the 
idealized Python version of the network to develop an algorithm to set the weights of the 
network for different operations.  

4.0 RESULTS 

A. Verilog Testing  
The network successfully passed each Verilog test that was applied to it. It was able to 
successfully set weights and leaks, interpret input, update neurons, and propagate spikes through 
the network exactly as we expected.  
B. Python Module Comparison  
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The network successfully replicated the Python module. The same inputs and weight matrix were 
applied to both modules and spikes occurred at the same time on the same neurons. This 
indicates that the network works as expected and is ready for operation. During the development 
process, various versions of the Python module were also used for training the network. The 
network was trained with a simple genetic algorithm that tried a series of weighting 
configurations, simulated the network, compared the output of each, and then took the best 
network and used it as the starting point for the next series of iterations of random changes to the 
weighting scheme.  
C. Potential Applications  
As mentioned above neural networks are ideal for a variety of applications, but especially 
interpreting natural stimuli such as auditory or visual signals, or interpreting data that contains a 
variety of unconnected inputs. One potential application envisioned is the isolation of a specific 
frequency component from a signal. So, if a signal is passed to the network, it would respond if a 
specific frequency component was in that signal, but not if that frequency was not there. Another 
application that is envisioned is the prediction of sports data. The network could be passed a 
series of data points on specific players and the network would predict which players would be 
the best during the upcoming season. This would allow the user to have better data during a 
fantasy football draft. However, the exciting part of neural network computing is that, like a 
standard processor, it can be applied to any number of applications depending on how it is 
programmed. For a standard processor this is the set of instructions. For a neural network, it is 
the scheme of interconnecting weights.  
CONCLUSION 
This paper describes the development and design of a 16-neuron neural network. The network 
was based on research done into current neuromorphic engineering technology and designs and 
based on the LIF neuron model and the AER communication system. The network was 
developed with a custom standard cell library and will be fabricated using a 6 600nm chip. The 
network was tested with a series of Verilog test benches as well as an idealized Python version of 
the code.  
 This design is an implementation of a novel way of computing. While powerful, this 
method of computing is non-intuitive and requires a completely different paradigm of thinking. 
Yet the authors believe that the design presented here is a workable implementation of this 
paradigm and are excited to implement various systems on the chip. With that said, several 
things could be improved in a second-generation chip. First of all, the authors hope to implement 
many more neurons in the design, if possible, as the LIF neuron implemented in this design was 
far larger than other published designs. Increasing the efficiency of used space could increase the 
number of neurons available and the computational power. The authors also hope to implement 
an overflow comparison and handling which was not placed in this design. This will still allow 
the network to function effectively as long as the network is operated with inputs and weights 
that are less than half of the bus capacity. Finally, the authors learned to prioritize designs that 
used lower metal layers rather than those that were compact. While compact designs may be 
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effective for processes with more metal layers, they just serve as a blockage for cells and cause 
problems for the router. Cells that take a little more space, but are all metal1, end up requiring 
much less space when considering interconnection wiring. 
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